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Content Identification I

~

e YouTube & other User Generated Content (UGC) sharing sites

e registration of copyrighted content — fingerprint database
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\o Related application: connected audio (Shazaam on I-phones) /
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Content Retrieval I

e User seeks similar contents (audio, video) in large database

e Can search based on fingerprints/hashes
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Cryptographic vs. Robust Hashes' \

e A cryptographic hash function ®x : X — {0, 1}* satisfies the
following property:

Pr[®g(z) = ®x ()] =27" Vo #a

e In contrast, a robust hash function should return the same

hash if x and 2’ are “perceptually similar”:

Prg|[®g(z) =Px(2))] > 1—€¢ Vr~a
Prg[®k(x) = P (2)] < e Va o




/ ‘Formulation of Content 1D Problem. \

e Content database = {x(m), 1 <m < M}

e Each x(m) = {xz1(m), zo(m),--- ,zxy(m)} € XY is a collection
of N frames. For audio ID,

— frames are short audio snippets (370 msec) with 31/32
temporal overlap.

— A 3-minute song is represented by N ~ 15, 500 frames

— desired granularity &~ 3 sec (L = 258 frames)
e Probe y € X’ consisting of L < N frames
e Is the probe related to one of the database elements?

e Construct ¢¥(y) € {0,1,2,--- , M}




‘ Performance Metrics I

Probability of false positives
Probability of false negatives
Robustness

Granularity

Database size

Storage requirements

Execution time
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‘Fingerprint-Based Content IDI

e Hash function ® returns fingerprint f(m) for each input x(m)

and fingerprint g for input probe y

e Decisions are made based on fingerprints only
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‘ Research Challenges I

signal processing primitives for robust hashes
efficient string matching algorithms

information-theoretic challenge: what is the fundamental

relation between database size, hash length, and robustness?

general framework for hash function design




/ ‘Statistical Model for Content Database. \

e Database elements x(m), 1 < m < M are drawn independently
from stationary probability distribution Px on XV
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/ Statistical Model for Probe. \

e M + 1 hypotheses Hy,---, Hyy

e under H,,, 1 <m < M:

//j/ \ 1

¥ W

Content x(m) probe y

L
W*(y[x(m), No) £ H W (yilTit Ny (m))
i=1
and Ny is drawn uniformly from {0,1,--- ,N — L — 1}

\o under Hy, probe y is drawn from same Py /

11



/ ‘Statistical Model for Hash Function. \

o Let F = ¢(X) € F¥ and G = ¢(Y) where | F| < |X|
e Fingerprint storage cost < N log|F| bits

e Assume
— the samples F;, 1 <1 < N are iid with pmf ppg
— the conditional pmf of g given f(m) and Ny is

i (&1E(m). No) £ T 1 (9:1 s (m)

= the pairs (F},G;), 1 <i < L are iid with pmf ppg

e If F(m) and G are independent, then
the pairs (F;,G;), 1 <1i < L are iid with product pmf pppa

/
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/ ‘General Definition of Content 1D Code. \

e A (M,N,L) content ID code for a size-M database populated
with XV-valued content items, and granularity L, is a pair
consisting of an encoding function ¢ : XY — F¥ returning a

fingerprint f = ¢(x), and a constrained decoding function
Y Xt —{0,1,---, M} returning 1 = ¢(y), where the
dependency on input y is via the fingerprint ¢(y).

e The rate of the code is

1
R= i log(MN)

(fundamental scaling parameter)

e Neither M nor NN necessarily dominates

\_ /
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List Decoder I

Define decoding metric d(f,g) on F x F

Extend additively to sequences:

L

d<f7 g‘NO) — Z d(fi—i-No? g’i)

i=1
Choose decision threshold 7

Decoder outputs list £ of all m such that

' f N L
o<y AE(m);glNo) < L7
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/ ‘Error Analysis for List Decoder' \

e Wlog assume m =1

e Error event #1: Miss: The correct m does not appear on the
decoder’s list:

VNo €{0,--- ,N—L—1} : d(f(1),g|Ng) > L.
e LError event #2: Incorrect Decoding;:
dm > 1, Ng€{0,--- ,N-L—1}: d(f(m),g|Ny) < Lt
Let N; = number of incorrect messages on the list

e Consider performance metrics P,,;ss and E[V;]
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/ ‘Error Analysis for List Decoder (Cont’d)' \

e Wlog, assume M = 1. Then
E[N;] = M Pr [ min  d(F(2), G|Ny) < LT]
0<No<N—L

< M(N -1L) oo hax Pr[d(F(2),G|Ny) < L]

= M(N — L)Pr|d(F(2),G|Nyg =0) < L]

= M(N - L) P£P5

L
Y d(F;, G;) < LT]
1=1

\ - 7
"~

=7
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/‘ Large-Deviations Bounds on Error Probabilities\l

e Give iid random variables v;, 1 < ¢ < L with distribution Py, a
function A, and a threshold 7, evaluate

Z h(v;) < LT]

1=1

p = Py

e Large-deviations bound:

where
E = in D(P
(7) Juin (Pv]Q)
and

L(r) £{Q : ) Qv)h(v) <}
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/0 Geometric view of E(7) = minger) D(Pv||Q):

P(X)
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/ ‘ Error Exponents I

e For any sequence of (M, N, L) content ID codes such that
lim + log(M N) = R, define the miss exponent

1

L—oo
and the incorrect-item exponent
1
Ei(PF, Pg|F, R, 7') — liminf — — IH]E[NI]
L—oo L
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/ e Define convex set of pmf’s over F2: \

L(T)2{Q : > Q(f,9)d(f.g) <7}

f9eF
e We have

EmiSS(PF,Pg|F,T) — min D(PI/:GnPFpg|F)+ min D(PI/TGHQ)]

PLo | Qele(r)

Ei(Pr, Pgip,R,7) = min | D(Pp¢||Pr Pa) + min D(PpgllQ) — R
Prc QE(r)
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‘ Achievable Rates I \

e Define the set of conditional distributions

gzé;m = {PG|F Pg = Pg,
Ep.py,  A(F,G) = Ep,od(F,G)}

and the generalized mutual information

Iami(Pr, Poip,d) £ min - D(PpPg || PrPo)

/
PLr€2gr

which also appears in information-theoretic analyses of channel

capacity with mismatched decoders

e Proposition: The supremum of the values of R for which the

error exponents are positive is R = Igmi(Pr, Pg|r,d) and is

achieved when 7 = Ep,. . d(F,G). /
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Matched Decoding I

e If pg|F is known, choose

d(f,g) = _long|F<g‘f> = Iowmi = I(F; G)

e Then the list decoder achieves positive error exponents for all

e Converse?

R < I(F;QG)
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4 Gonvorse] A

e Recall Ny € {0,1,---, N—L—1} = unknown nuisance parameter
e [s GLRT optimal?

e Proposition: For any sequence of of (M, N, L) content 1D

codes such that .
limz log M > I(F;G),

the average error probability P, does not vanish.

(Proof by Fano’s inequality)

e This bound is unsatisfactory because

— can achieve all %logM <I(F;G)— %logN = gap!

\ — P, criterion gives vanishing weight to Hj /
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/ Strong Converse I

e Max error criterion:

A
Pe max = ogr%@agxM Pr{)(Y) # m |Hp,]

e Proposition: For any sequence of of (M, N, L) content 1D

codes such that
1
lim 7 log(MN) > I(F;G),
Pe max tends to 1

e Lower and upper bounds now coincide

.
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