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Content Identification

• YouTube & other User Generated Content (UGC) sharing sites

• registration of copyrighted content → fingerprint database

• Related application: connected audio (Shazaam on I-phones)
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Content Retrieval

• User seeks similar contents (audio, video) in large database

• Can search based on fingerprints/hashes
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Cryptographic vs. Robust Hashes

• A cryptographic hash function ΦK : X → {0, 1}k satisfies the

following property:

PrK [ΦK(x) = ΦK(x′)] = 2−k ∀x �= x′

• In contrast, a robust hash function should return the same

hash if x and x′ are “perceptually similar”:

PrK [ΦK(x) = ΦK(x′)] > 1− ε ∀x ∼ x′

PrK [ΦK(x) = ΦK(x′)] < ε ∀x �∼ x′

5



�

�

�

�

Formulation of Content ID Problem

• Content database = {x(m), 1 ≤ m ≤M}
• Each x(m) = {x1(m), x2(m), · · · , xN (m)} ∈ XN is a collection

of N frames. For audio ID,

– frames are short audio snippets (370 msec) with 31/32

temporal overlap.

– A 3-minute song is represented by N ≈ 15, 500 frames

– desired granularity ≈ 3 sec (L = 258 frames)

• Probe y ∈ XL consisting of L	 N frames

• Is the probe related to one of the database elements?

• Construct ψ(y) ∈ {0, 1, 2, · · · ,M}
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Performance Metrics

• Probability of false positives

• Probability of false negatives

• Robustness

• Granularity

• Database size

• Storage requirements

• Execution time
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Fingerprint-Based Content ID

• Hash function Φ returns fingerprint f(m) for each input x(m)

and fingerprint g for input probe y

• Decisions are made based on fingerprints only
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Research Challenges

• signal processing primitives for robust hashes

• efficient string matching algorithms

• information-theoretic challenge: what is the fundamental

relation between database size, hash length, and robustness?

• general framework for hash function design
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Statistical Model for Content Database

• Database elements x(m), 1 ≤ m ≤M are drawn independently

from stationary probability distribution PX on XN
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Statistical Model for Probe

• M + 1 hypotheses H0, · · · , HM

• under Hm, 1 ≤ m ≤M :

WL(y|x(m), N0) �
L∏

i=1

W (yi|xi+N0
(m))

and N0 is drawn uniformly from {0, 1, · · · , N − L− 1}
• under H0, probe y is drawn from same PY
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Statistical Model for Hash Function

• Let F = φ(X) ∈ FN and G = φ(Y) where |F| 	 |X |
• Fingerprint storage cost ≤ N log |F| bits
• Assume

– the samples Fi, 1 ≤ i ≤ N are iid with pmf pF

– the conditional pmf of g given f(m) and N0 is

pLG|F (g|f(m), N0) �
L∏

i=1

pG|F (gi|fi+N0(m))

⇒ the pairs (Fi, Gi), 1 ≤ i ≤ L are iid with pmf pFG

• If F(m) and G are independent, then

the pairs (Fi, Gi), 1 ≤ i ≤ L are iid with product pmf pF pG
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General Definition of Content ID Code

• A (M,N,L) content ID code for a size-M database populated

with XN -valued content items, and granularity L, is a pair

consisting of an encoding function φ : XN → FN returning a

fingerprint f = φ(x), and a constrained decoding function

ψ : XL → {0, 1, · · · ,M} returning m̂ = ψ(y), where the

dependency on input y is via the fingerprint φ(y).

• The rate of the code is

R � 1

L
log(MN)

(fundamental scaling parameter)

• Neither M nor N necessarily dominates
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List Decoder

• Define decoding metric d(f, g) on F × F
• Extend additively to sequences:

d(f ,g|N0) =
L∑

i=1

d(fi+N0 , gi)

• Choose decision threshold τ

• Decoder outputs list L of all m such that

min
0≤N0<N−L

d(f(m),g|N0) < Lτ
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Error Analysis for List Decoder

• Wlog assume m = 1

• Error event #1: Miss: The correct m does not appear on the

decoder’s list:

∀N0 ∈ {0, · · · , N−L−1} : d(f(1),g|N0) > Lτ.

• Error event #2: Incorrect Decoding:

∃m > 1, N0 ∈ {0, · · · , N−L−1} : d(f(m),g|N0) < Lτ

Let Ni = number of incorrect messages on the list

• Consider performance metrics Pmiss and E[Ni]
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Error Analysis for List Decoder (Cont’d)

• Wlog, assume M = 1. Then

E[Ni] = M Pr

[
min

0≤N0<N−L
d(F(2),G|N0) < Lτ

]
≤ M(N − L) max

0≤N0<N−L
Pr [d(F(2),G|N0) < Lτ ]

= M(N − L)Pr [d(F(2),G|N0 = 0) < Lτ ]

= M(N − L) PL
F P

L
G

[
L∑

i=1

d(Fi, Gi) < Lτ

]
︸ ︷︷ ︸

=?
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Large-Deviations Bounds on Error Probabilities

• Give iid random variables vi, 1 ≤ i ≤ L with distribution PV , a

function h, and a threshold τ , evaluate

p � PL
V

[
L∑

i=1

h(vi) < Lτ

]

• Large-deviations bound:

p ≤ 2−LE(τ)

where

E(τ) = min
Q∈Γ(τ)

D(PV ‖Q)

and

Γ(τ) � {Q :
∑
v

Q(v)h(v) < τ}
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• Geometric view of E(τ) = minQ∈Γ(τ)D(PV ‖Q):
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Error Exponents

• For any sequence of (M,N,L) content ID codes such that

lim 1
L log(MN) = R, define the miss exponent

Emiss(PF , PG|F , τ) = lim inf
L→∞

− 1

L
lnPmiss

and the incorrect-item exponent

Ei(PF , PG|F , R, τ) = lim inf
L→∞

− 1

L
lnE[Ni]
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• Define convex set of pmf’s over F2:

Γ(τ) � {Q :
∑

f,g∈F
Q(f, g)d(f, g) < τ}

• We have

Emiss(PF , PG|F , τ) = min
P ′
FG

[
D(P ′

FG‖PF PG|F ) + min
Q∈Γc(τ)

D(P ′
FG‖Q)

]

Ei(PF , PG|F , R, τ) = min
P ′
FG

[
D(P ′

FG‖PF PG) + min
Q∈

◦
Γ(τ)

D(P ′
FG‖Q)− R

]
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Achievable Rates

• Define the set of conditional distributions

P ′
G|F � {P ′

G|F : P ′
G = PG,

EPFP ′
G|F

d(F,G) = EPFGd(F,G)}
and the generalized mutual information

IGMI(PF , PG|F , d) � min
P ′

G|F∈P′
G|F

D(PFP
′
G|F ‖PFPG)

which also appears in information-theoretic analyses of channel

capacity with mismatched decoders

• Proposition: The supremum of the values of R for which the

error exponents are positive is R = IGMI(PF , PG|F , d) and is

achieved when τ = EPFGd(F,G).
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Matched Decoding

• If pG|F is known, choose

d(f, g) = − log pG|F (g|f) ⇒ IGMI = I(F ;G)

• Then the list decoder achieves positive error exponents for all

R < I(F ;G)

• Converse?
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Converse

• Recall N0 ∈ {0, 1, · · ·, N−L−1} = unknown nuisance parameter

• Is GLRT optimal?

• Proposition: For any sequence of of (M,N,L) content ID

codes such that

lim
1

L
logM > I(F ;G),

the average error probability P e does not vanish.

(Proof by Fano’s inequality)

• This bound is unsatisfactory because

– can achieve all 1
L logM < I(F ;G)− 1

L logN ⇒ gap!

– P e criterion gives vanishing weight to H0
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Strong Converse

• Max error criterion:

Pe,max � max
0≤m≤M

Pr[ψ(Y) �= m |Hm]

• Proposition: For any sequence of of (M,N,L) content ID

codes such that

lim
1

L
log(MN) > I(F ;G),

Pe,max tends to 1

• Lower and upper bounds now coincide
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